Mathematical Reasoning and Commonsense Reasoning

Pan Lu
2023.05.31

About Me

https://lupantech.github.io/

- 4th-year Ph.D. Candidate at UCLA
- Research interests
* Large language models for planning, reasoning, and generation
* Mathematical reasoning in mathematics and sciences domains
* Trustworthy NLP: explainable, reliable, and socially responsible
* Conversational agents: value-aware and socially intelligent
* Multimodal reasoning for vision-and-language applications
- Workshops and tutorials
* Lead organizer for NeurIPS-21 MathAI4ED Workshop
* Lead organizer for NeurIPS-22 MathAI Workshop
* Keynote presenter at IJCAI-23 Tutorial on math reasoning

Outline

- Mathematical Reasoning
- Tasks and benchmarks
- Neural network methods
- Language models and LLMs
- Challenges and opportunities

- Commonsense Reasoning
- Definition of commonsense
- Commonsense benchmarks
- Commonsense integration into NNs

Deep Learning for Mathematical Reasoning

MWP: Math Word Problems

Automatically solve math word problems

Question: Tom has 2 apples and Jerry has 5 apples. How many apples do they have in total?

Rationale: $x=2+5$

Solution: 7

Four basic arithmetic operations with single or multiple operation steps.

Question: Sara picked 45 pears and Sally picked 11 pears from the pear tree. How many pears were picked in total?

Math ability: basic math
Language complexity: simple language
Format: generative question answering
Knowledge: no external knowledge
Instruction: You are given a question that involves the
calculation of numbers. You need to perform either an
addition or subtraction operation on the numbers. Generate
your answer to the given question.

Program 1:

def $\operatorname{solution}(x, y)$:
answer $=x+y$
return answer
print(solution(45, 11)) \# total pears is the sum of pears with Sara and Sally
Program 2:
$x=45$
$y=11$
answer $=x+y$ \# total pears is the sum of pears with Sara and Sally
print(answer)
Answer: 56

Multimodal Math Word Problems

Math Reasoning over Multimodal Information (images, figures, tables, etc.)

Q: Which picture shows the pizza inside the oven?
C: (A) left one (B) right one

Q: How many sticks are there? A: 80

square beads	$\$ 2.97$ per kilogram
oval beads	$\$ 3.41$ per kilogram
flower-shaped beads	$\$ 2.18$ per kilogram
star-shaped beads	$\$ 1.95$ per kilogram
heart-shaped beads	$\$ 1.52$ per kilogram
spherical beads	$\$ 3.42$ per kilogram
rectangular beads	$\$ 1.97$ per kilogram

Question: If Tracy buys 5 kilograms of spherical beads, 4 kilograms of star-shaped beads, and 3 kilograms of flower-shaped beads, how much will she spend? (unit: \$)
Answer: 31.44

Solution:

Find the cost of the spherical beads. Multiply: $\$ 3.42 \times 5=\$ 17.10$. Find the cost of the star-shaped beads. Multiply: $\$ 1.95 \times 4=\$ 7.80$. Find the cost of the flower-shaped beads. Multiply: $\$ 2.18 \times 3=\$ 6.54$ Now find the total cost by adding: $\$ 17.10+\$ 7.80+\$ 6.54=\$ 31.44$. She will spend $\$ 31.44$

GPS: Geometry Problem Solving

Neuro-symbolic reasoning over geometry diagrams, theorems, and solvers

Automated Theorem Proving

Demonstrate the truth of a mathematical claim (a theorem) via a sequence of logical arguments (a proof)

Input: theorem

Statement

If $\operatorname{gcd}(n, 4)=1$ and $\operatorname{lcm}(n, 4)=28$, show that n is 7 .

Informal proof
We know that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$, hence $1 \cdot 28=n \cdot 4$.
Then $n=1 \cdot 28 / 4=7$,
completing the proof

Formal sketch have c1: " $1 * 28=\mathrm{n} * 4$ " using assms <proof> then have c2: "n $=1 * 28 / 4$ " <proof>
then show ?thesis <proof>

Output: proof
Verified formal proof

$$
\text { have c1: " } 1 * 28=n * 4 "
$$ using assms

by (smt (z3) prod_gcd_lcm_nat) then have $\mathrm{c} 2: \mathrm{n}=1 * 28 / 4$ "
by auto
then show ?thesis
by auto

DROP: Reading Comprehension with Discrete Reasoning

Discrete reasoning over content of paragraphs

Subtraction

Comparison

Passage

That year, his Untitled (1981), a painting of a haloed, black-headed man with a bright red skeletal body, depicted amid the artists signature scrawls, was sold by Robert Lehrman for $\$ 16.3$ million, well above its $\$ 12$ million high estimate.

In 1517, the seventeen-year-old King sailed to Castile. There, his Flemish court In May 1518, Charles traveled to Barcelona in Aragon.

In 1970, to commemorate the 100th anniversary of the founding of Baldwin City, Baker University professor and playwright Don Mueller and Phyllis E. Braun, Business Manager, produced a musical play entitled The Ballad Of Black Jack to tell the story of the events that led up to the battle.

Question
How many more dollars was the Untitled (1981) painting sold for than the 12 million dollar estimation?

Where did Charles travel to first, Castile or Barcelona?

Who was the University professor that helped produce The Ballad Of Black Jack, Ivan Boyd or Don Mueller?

Answer

Probing Human-level Intelligence of Language Models

Probing Numerical Commonsense Knowledge

However, for Numerical Commonsense Knowledge :

A bird usually has [MASK] legs.	$\begin{aligned} & \text { 1st: four (} 44.8 \%) \\ & \text { 2nd: two (18.7\%) } \end{aligned}$
A car usually has [MASK] wheels.	1st:four(53.7\%)
	2nd:two (20.5\%)
A car usually has [MASK] round wher	1st:two (37.1\%)
A car usually has [MASK] round whe	2nd: four(20.2\%)

Measuring High-level Problem Solving

Problem: Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose?
Solution: There are two cases here: either Tom chooses two yellow marbles (1 result), or he
chooses two marbles of different colors $\binom{4}{2}=6$ results). The total number of distinct pairs of marbles Tom can choose is $1+6=7$.

$$
\begin{aligned}
& \text { Problem: The equation } x^{2}+2 x=i \text { has two } \\
& \text { complex solutions. Determine the product of their } \\
& \text { real parts. } \\
& \text { Solution: Complete the square by adding } 1 \text { to } \\
& \text { each side. Then }(x+1)^{2}=1+i=e^{\frac{i \pi}{4}} \sqrt{2} \text {, so } \\
& x+1= \pm e^{\frac{i \pi}{8}} \sqrt[4]{2} \text {. The desired product is then } \\
& \left(-1+\cos \left(\frac{\pi}{8}\right) \sqrt[4]{2}\right)\left(-1-\cos \left(\frac{\pi}{8}\right) \sqrt[4]{2}\right)=1- \\
& \cos ^{2}\left(\frac{\pi}{8}\right) \sqrt{2}=1-\frac{\left(1+\cos \left(\frac{\pi}{4}\right)\right)}{2} \sqrt{2}=\frac{1-\sqrt{2}}{2} .
\end{aligned}
$$

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Seq2Seq Neural Networks

Equation: $x=5+4+3-2$; solution: [10]

Model output (Equation template): $\mathrm{x}=\mathrm{n} 1+\mathrm{n} 3+\mathrm{n} 2-\mathrm{n} 4$
Applying number mapping to equation form

Model input: Dan have n 1 , pens and n 2 pencils, Jessica have $n 3$ more pens and $n 4$ less pencils than him. How many pens and pencils do Jessica have in total?

Problem: Dan have 5 pens and 3 pencils, Jessica have 4 more pens and 2 less pencils than him. How many pens

Tree-based Neural Networks

Problem: Robin was making baggies of cookies with 6 cookies in each bag. If she had 23 chocolate cookies and 25 oatmeal cookies, how many baggies could she make?

Solution Expression: $(23+25) \div 6$
Solution: 8

Large Language Models (LLMs)

LLMs and In-context Learning

Zero-shot

Given only a natural language description of the task
Translate English to French: $\quad \longleftarrow$ task description
2 cheese $=>$

Few-shot

Given the task description and a few examples of the task

```
```

Translate English to French:

```
```

Translate English to French:
sea otter => loutre de mer
sea otter => loutre de mer
peppermint => menthe poivrée
peppermint => menthe poivrée
plush girafe => girafe peluche
plush girafe => girafe peluche
cheese =>
cheese =>
prompt

```
```

 prompt
    ```
```


One-shot

Given the task description and a single example of the task

| Translate English to French: | \longleftarrow task description |
| :--- | :--- |
| sea otter => loutre de mer | \longleftarrow example |
| cheese $=>$ | \longleftarrow prompt |

Emergent Abilities of LLMs

Question: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Cot reasoning processes
(A) Math word problems

An ability is emergent if it is not present in smaller models but is present in larger models.

Chain-of-Thought Prompting (CoT)

Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 $\mathrm{cm} \mathrm{cm}^{\wedge} 3$, which is less than water. Thus, a pear would float. So the answer is no.

SayCan (Instructing a robot) Human: How would you bring me something that isn't a fruit?

Explanation: the user wants
something to eat that isn't a fruit. An nergy bar is not a fruit, so I will bring he user an energy bar,
Plan: 1. find(energy bar) 2
pick(energy bar) 3. find(user) 4
put(energy bar) 5. done().

Math Word Problems (multiple choice)

Q: How many keystrokes are needed to type the numbers from 1 to 500 ? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9 . There are 90 two-digit numbers from 10 to 99 . There are 401 three-digit numbers from 100 to $500.9+90(2)+401(3)=1392$. The answer is (b).

Date Understanding
Q: The concert was scheduled to be on $06 / 01 / 1943$, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?
A: One day after 06/01/1943 is $06 / 02 / 1943$, so today is $06 / 02 / 1943$. 10 days before today is $05 / 23 / 1943$. So the answer is 05/23/1943.

Last Letter Concatenation Q: Take the last letters of the words in "Lady Gaga" and concatenate them.

A: The last letter of "Lady" is " y ". The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya.

CSQA (commonsense)

Q: Sammy wanted to go to where the people were. Where might he go? ace track (b) populated are (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Race tracks, desert, apartments, and roadblocks don't have a lot of people, but populated areas do. So the answer is (b).

Sports Understanding
Q: Is the following sentence
plausible? "Joao Moutinho caught the screen pass in the NFC championship."
A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.

Coin Flip (state tracking) Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Chain-of-Thought Prompting (CoT) unlocks and boosts the compositional reasoning ability in the natural language space.

Limitations of LLMs (CoT)

Lack the ability to perform precise mathematical reasoning

Table:

| Blocks from school | |
| :--- | :---: |
| Name | Number of blocks |
| Wendy | 14 |
| Carson | 8 |
| Zach | 17 |
| Lila | 17 |
| Nicole | 3 |
| Shane | 7 |
| Henry | 5 |
| Devin | 17 |

Question: Some students compared
how many blocks they live from school. What is the mean of the numbers?

Solution:

(Step 1) The mean is the average of the numbers.
(Step 2) To find the mean, add the numbers and divide by the number of students.
(Step 3) $14+8+17+17+3+7+5+17=86$
(Step 4) There are 8 students, so divide 86 by 8 .
(Step 5) $86 \div 8=10.75$
(Step 6) The mean is 10.75 . The answer is 10.75 .

Limitations of LLMs (CoT)

An inability to combine different tools to perform complex reasoning

Table:

| Tour boat schedule | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ocean City | 8:15 A.M. | 9:00 A.M. | 9:15 A.M. | 9:30 A.M. | 10:00 A.M. |
| Whale Watch Harbor | 9:30 A.M. | 10:15 A.M. | 10:30 A.M. | 10:45 A.M. | 11:15 A.M. |
| Oyster Lighthouse | 10:15 A.M. | 11:00 A.M. | 11:15 A.M. | 11:30 A.M. | 12:00 P.M. |
| Fisherman's Cove | 11:15 A.M. | 12:00 P.M. | 12:15 P.M. | 12:30 P.M. | 1:00 P.M. |
| Surfing Beach | 12:00 P.M. | 12:45 P.M. | 1:00 P.M. | 1:15 P.M. | 1:45 P.M. |

Question: Look at the following schedule. Haley is at Ocean City at 9.45 A.M. How soon can she get to Surfing Beach?
M. (C) 10:30 A.M. (D) 12:15 P.M.

GPT-3
(text-davinci-002)

Solution:

(Step 1) Find 9:45 A.M. on the schedule.
(Step 2) The next stop is Whale Watch Harbor at 10:15 A.M.
(Step 3) The earliest she can get to Surfing Beach is 12:00 P.M. The answer is 12:00 P.M.

Google

Self Consistency with CoT (CoT-SC)

Tree-of-Thought Prompting (ToT)

(d) Tree of Thoughts (TOT)

Tool-Augmented LLMs

[^0]
Program-aided LLMs

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers. Assuming the first two numbers are 0 and 1 , what is the 50th number in Fibonacci sequence?

Chain-of-thought (CoT)

The first number is 0 , the second number is 1 , therefore, the third number is $0+1=1$. The fourth number is $1+1=2$. The fifth number is $1+2=3$. The sixth number is $2+3=5$. The seventh number is $3+5=8$. The eighth number is $5+8=13$.
... (Skip 1000 tokens)
The 50 th number is $32,432,268,459$.

Program-of-thought (PoT)

```
length_of_fibonacci_seq \(=50\)
```



```
fibonacci_sequence \([0]=0\)
fibonacci_sequence \([1]=1\)
For i in range( 3 , length_of_fibonacci_seq):
    fibonacci_sequence \([\bar{i}]=\) fibonacci_sequence ( \(i-1]+\)
    fibonacci_sequence[i-2]
ans \(=\) fibonacci_sequence [-1]
```


Wolfram Plugin for ChatGPT

Chameleon: Plug-and-Play Compositional Reasoning

Tool-augmented LLMs via composing various tools to perform complex tasks.
\because Hugging Face
Image Captioner

() GitHub

Text Detector

Knowledge Retrieval Query Generator Solution Generator
b Bing
sis
Answer Generator

Low－resource Settings

Annotators check geometric question：

在等腰直角三角形 DBC 中，角 BDC 等于 90 度， BF 平分角 DBC ，与 CD 相交于点 F ，延长 BD 到 A ，使 DA 等于 DF 。求证：三角形 FBD 与三角形 ACD 全等。 In the isosceles right triangle DBC ，the angle BDC is equal to 90 degrees． BF bisects the angle DBC and intersects the CD at point F ． BD is extended to A making DA is equal to DF．Proof：Triangle FBD and triangle ACD are congruent．

Annotators create：

| 形状（shape） | 等腰直角三角形 （Isosceles Right Triangle ） | DBC |
| :---: | :---: | :---: |
| | 角（Angle） | BDC，DBC |
| | 线段（Line Segment） | $\mathrm{BF}, \mathrm{CD}, \mathrm{BD}, \mathrm{DA}, \mathrm{DF}$ |
| | 点（Point） | F，A |
| 位置（Position） | 交（Intersect），平分（Bisect） | |
| 数值（Value） | 90 | |
| 数量关系 （Quantitative Relation） | 等于（Equal）：（BDC，90），（DA，DF）
 全等（Congruent）：（FBD，ACD） | |
| 位置关系
 （Positional Relation） | $\begin{aligned} & \text { 交(Intersect): (BF, CD, F) } \\ & \text { 平分(Bisect): (BF, DBC) } \end{aligned}$ | |

| Tag | Equation | Segmented | Question |
| :---: | :---: | :---: | :---: |
| novel | $x=23 * 2$ | اصطاد علي 23 سمكه واصطاد سعود مثليها فما عدد ما اصطاده سعود ؟ | اصطاد علي 23 سمكة واصطاد سعود مثليها، فما عدد ما اصطاده سعود؟ |
| novel | $x=18+8$ | كم عصفورا كان علي الشجره اذا علمت انه بعد ان طار منهم 8 بقي 18 عصفورا ؟ | كم عصفورًا كان على الشجرة، إذا علمت أنه بعد أن طار منهم 8 بقي 18 عصفورًا؟ |
| inspired | $x=6 *(2 / 5)$ | كم كيلومتر تساوي（2／5） | كم كيلومتر تساوي（2／5（2）هن |
| inspired | $x=160 * 35$ | زرع غسان 35 صفا من الازهار في كل صف 160 زهر زهره ؛ فكم زهره زیع ؟ | فكم زهرة زرع؟ |
| inspired | $x=50 * 40 \%$ | 40\％من | \％ 40 من 50 ＝ |
| novel | $x=188 / 3.14$ | ما هو طول القطر للدائره التي يساوي محيطها 188 سم | ما هو طول القطر للدائرة التي يساوي محيطها 188 سمه؟ |
| novel | $x=876-343$ | اوجد قيمه ： | أوجد قيمة：876－343＝ |
| inspired | $x=1 / 8$ | ما هو النظير الضربي ل 86 ¢ 8 ¢ | ما هو النظير الضربي ل |
| inspired | $x=36 / 9$ | 36 شجره مزروعه في 9 صفوف ؛ فكيم كل صف ؟ | 36 كل شفجرة مزروعة في 9 صفوف؛ فكم عدد الأشجار في |
| novel | $x=677-563$ | اوجد ناتج ： | أوجد ناتج：677－563＝ |

GeoRE：A Relation Extraction Dataset for Chinese Geometry Problems，NeurIPS 2021 MATHAI4ED Workshop ArMATH：a Dataset for Solving Arabic Math Word Problems，LREC 2022 KoTAB：Korean Template－Based Arithmetic Solver with BERT，BigComp 2020

Low-resource Settings

Generalization and Robustness

 and he gave 3 to Mary. How many balls does Mary have now?

John had 8 balls and he gave 4 to Mary. Who has more balls now?

Large language models are inconsistent for mathematical reasoning.

IJCAI 2023 Tutorial: Mathematical Reasoning

Zhenwen Liang NOTVERSITYOF

Pan Lu
UCA

Ashwin Kalyan
Ai2

Sean Welleck
A 22 University of washington

Date: August 21, 2023 Venue: Macao, S.A.R

IJCAI/2023 MACAO
Registration is open: https://registration.ijcai.org

Definition of Common Sense

- The basic level of practical knowledge and reasoning
- Concerning everyday situations and events
- That are commonly shared among most people.

For example, it's ok to keep the closet door open, but it's not ok to keep the fridge door open, as the food inside might go bad.

Essential for humans to live and interact with each other in a reasonable and safe way

Essential for AI to understand human needs and actions better

Knowledge in LMs

Do pre-trained LMs already have some commonsense knowledge?

Knowledge in LMs

Pre-trained LMs still lack commonsense knowledge and can generate false facts.

Commonsense Benchmarks

Social IQA: Social Interaction QA

Reasoning about Social Situations

Social
IQa

> Kevin spills the chili all over the floor and made the office a huge mess.

ATOMIC: Knowledge tested in Social IQA

Physical IQa: Physical Interaction QA

Reasoning about Physical Interaction

Physical

IQa
To separate egg whites from the yolk using a water bottle, you should...
a. Squeeze the water bottle and press it against the yolk. Release, which creates suction and lifts the yolk.

b. Place the water bottle and press it against the yolk. Keep pushing, which creates suction and lifts the yolk.

Test the ability of natural language understanding models to link text to a robust intuitive-physics model of the world

ScienceQA: Science Question Answering

Reasoning about Scientific Topics

Question: Which type of force from the baby's hand opens the cabinet door?

Options: (A) pull (B) push

Context: A baby wants to know what is inside of a cabinet. Her hand applies a force to the door, and the door opens.
$\xrightarrow{8 \rightarrow}$ Answer: The answer is A.

BECAUSE:

$\xrightarrow{2} \xrightarrow{\text { Le }}$
Lecture: A force is a push or a pull that one object applies to a second object. The direction of a push is away from the object that is pushing. The direction of a pull is toward the object that is pulling.

- Explanation: The baby's hand applies a force to the cabinet door. This force causes the door to open. The direction of this force is toward the baby's hand. This force is a pull.

ScienceQA: Domain Diversity

| Biology
 Genes to traits Classification Adaptations | Physics
 Materials
 Magnets
 Velocity and forces | Geography
 State capitals
 Geography
 Maps | History
 Colonial America
 English colonies in North America The American Revolution | Civics
 Social skills \square RO Government The Constitution | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Traits and heredity
 Ecosystems
 Classification
 Scientific names
 Heredity
 Ecological interactions | Force and motion
 Particle motion and energy
 Heat and thermal energy
 States of matter
 Kinetic and potential energy
 Mixture | Oceania: geography Worl
 Physical Geography Greec
 The Americas: geography Ancie
 Oceans and continents World
 Cities Ameri
 States Medi | World History
 Greece
 Ancient Mesopotamia
 World religions
 American history
 Medieval Asia | mic principles demand d finance dies environment | subjects 26 topics |
| Cells
 Plants
 Animals
 Plant reproduction | Chemistry
 Solutions
 Physical and chemical change Atoms and molecules | Writing Strategies
 Supporting arguments
 Sentences, fragments, and run-ons
 Word usage and nuance
 Creative techniques
 Audience, purpose, and tone
 Pronouns and antecedents
 Persuasive strategies
 Editing and revising
 Visual elements
 Opinion writing | Vocabulary
 Categories | Verbs
 Verb tense
 Capitalization
 Formatting | 127
 categories |
| Earth Science
 Weather and climate
 Rocks and minerals
 Astronomy
 Fossils | Chemical reactions
 Engineering
 Designing experiments Engineering practices | | Context clues
 Grammar
 Sentences and fragments
 Phrases and clauses | Punctuation
 Fragments
 Phonology
 Rhyming | 379
 skills |
| Earth events
 Plate tectonics | Units and Measurement Weather and climate | | Figurative Language Literary devices | Reference
 Research skills | |

ScienceQA: Context Diversity

Average precipitation in Seattle, Washington

| Planet | Volume (billions of km^{3}) | Primary composition |
| :---: | :---: | :---: |
| Mercury | 60 | rock |
| Venus | 930 | rock |
| Earth | 1,090 | rock |
| Mars | 160 | rock |
| Jupiter | $1,431,280$ | gas |
| Saturn | 827,130 | gas |
| Uranus | 68,330 | ice |
| Neptune | 62,530 | ice |

Understanding Time is Important

People were angry

Police used tear gas

People were angry at something (which ended in violent conflicts with the police)... The police finally used tear gas (to restore order).

Understanding Time is Important

Police used tear gas

People were angry

Temporal Commonsense

In natural language, we rarely see explicit timestamps.
The language models have to infer the temporal order from cues in the text.

- "will" or "will not"?

Dr. Porter is taking a vacation and will not be able to see you soon.

Dr. Porter is taking a walk and will be able to see you soon.

Temporal Commonsense: Challenges

- Events are associated with time
- Attributes and relations may change over time
- Knowledge bases need to be qualified temporally

Senator Obama

President Obama

Former President Obama

MC-TACO: Multiple Choice Temporal Common Sense

Reasoning about Temporal Commonsense

MC-TACO

| S1: Growing up on a farm near St. Paul, L. Mark Bailey didn't dream of becoming a judge.
 Q1: Is Mark still on the farm now?
 [x] no
 [] yes
 Reasoning type: stationarity | |
| :---: | :---: |
| S2: The massive ice sheet, called a land you see today.
 Q2: When did the glacier start to im
 [x] centuries ago
 [] 10 years ago
 Reasoning type: event typical time | the land's features?
 [] hours ago
 [x] tens of millions of years ago |
| S3: Carl Laemmle, head of Univer his studio and introduced him to C Q3: How long did the tour last?
 [] 9 hours
 [x] 45 minutes
 Reasoning type: event duration | studios, gave Einstein a tour of n.
 [] 15 days
 [] 5 seconds |

Neural Language Models and Commonsense Knowledge

Incorporating Structured Commonsense Knowledge

Incorporating Unstructured Commonsense Knowledge

Q: What can help alleviate global warming?

Multiple-Choice CSR
(reason w/ question+choice)
Dpen-Ended LSR (reason w/ question)
(A) air cooler (B) fossil fuel
(C) renewable energy (D) water
a large text corpus of commonsense facts
$\sqrt{6}$ carbon dioxide is the major greenhouse MultilHop gas contributing to global warming . Reasoning trees remove carbon dioxide from the atmosphere through photosynthesis .

Output: ..., renewable energy, tree, solar battery, ... a ranked list of concepts as answers.

Open-Ended Commonsense Reasoning

Why Al is incredibly smart -- and shockingly stupid

Why AI is incredibly smart and shockingly stupid

Main References \& Additional Reading

[1] Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, Kai-Wei Chang, A Survey of Deep Learning for Mathematical Reasoning, ACL 2023.
[2] Resources of deep learning for mathematical reasoning (DL4MATH): https://github.com/lupantech/dl4math.
[3] Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin Choi, Dan Roth, Commonsense Reasoning for Natural Language Processing, ACL 2020 Tutorial.
[4] Yuchen Lin, Xiang Ren, Commonsense Knowledge and Reasoning for NLP, ACL 2022 KnowledgeNLP Tutorial.
[5] Yejin Choi, Why AI is incredibly smart and shockingly stupid, TED 2023
[6] Yejin Choi, The Curious Case of Commonsense Intelligence, 2022
[7] Yejin Choi, Neural Knowledge and Reasoning: On Commonsense Intelligence, UW CSE P 517 -- Natural Language Processing [Winter 2021].

Thanks for your attention!

These lecture slides are intended solely for educational and research purposes.

The copyright of the content within these slides is held by the respective original creators.

Any utilization of the materials should be accompanied by proper acknowledgment and citation in accordance with relevant copyright and intellectual property guidelines.

Thanks!

[^0]: FlanPaLM: Let's find the average of DePlot across the two sets. We add the two numbers in the DePlot row and divide by $2: 91.0+67.6=158.6 / 2=79.3$. Let's find the second strongest model across the two sets. We find the row with the second highest average: Row 3. We find theaverage of Matcha across the two sets. We add the two numbers in the MatCha row and divide by $2: 89.0+38.0=127.0 / 2=63.5$. We subtract the second strongest average from the strongest average: 79.3-63.5=15.8. The answer is $\mathbf{1 5 . 8}$.

